
ADVANCED DESIGN AND VERIFICATION ENVIRONMENT
FOR CYBER-PHYSICAL SYSTEM ENGINEERING
www.advance-­‐ict .eu

D.5.1 - ADVANCE PROCESS INTEGRATION I
ADVANCE

Grant Agreement: 287563
Date: 25th September, 2012
Pages:

31
 Status:

Final
 Access:

Access List
 Reference:

N/A
 Issue: 1.0

Partners / Clients:

FP7 Framework Programme European Union

Consortium Members:

University of
Southampton

Critical Software
Technologies Alstom Transport Systerel Heinrich Heine

Universität Düsseldorf

Contributors:

Lukas Ladenberger
Stefan Hallerstede
Michael Jastram

John Colley

Reviewers:

Laurent Voisin

2

Contents

1 Preface 4

2 Process Integration Objectives 5
2.1 Motivation . 5
2.2 Requirements Analysis . 6
2.3 Safety Analysis . 6

3 Requirements Analysis 7
3.1 Tracing Requirements into Specifications 7
3.2 A Model for Requirements Tracing 7
3.3 Tracing of Artefacts and Phenomena 9
3.4 Tracing Artefacts into Formal Refinements 10
3.5 A Process for Requirements Modelling and Validation 11
3.6 Tool Support . 12
3.7 Conclusion . 13

4 Safety Analysis 15
4.1 Introduction . 15
4.2 The Washing Machine Case Study 15
4.3 Summarising the Safety Analysis Method 28
4.4 Tool Support . 28

5 Summary 29

Bibliography 30

3

Chapter 1

Preface

WP5 D5.1 deliverable definition: ADVANCE Process Integration I.

This deliverable reports on the initial work on combining formal modelling
with requirements analysis and safety analysis and measures progress of these
activities against plan. The emphasis is to review the development of the
methods that will need to be in place to enable requirements and safety
analysis to be linked to formal models. The progress on tool development is
then to be assessed to ensure that this development will meet the method-
ological requirements.

In chapter 2 we present the motivation for the work in the two primary
areas: Requirements Analysis and Safety Analysis.

In chapter 3 we deal with Requirements Analysis in detail, describing an
incremental approach to requirements modelling and validation that incor-
porates formal and informal reasoning and the tool support developed to
support this approach.

In chapter 4 we describe the Safety Analysis method we will adopt for AD-
VANCE and how we plan to integrate this approach with the Requirements
Analysis method and tooling described in chapter 3.

In chapter 5 we summarise the work done so far for this workpackage and
the focus of future work.

4

Chapter 2

Process Integration Objectives

2.1 Motivation
A large part of the ADVANCE project focus is on formal and simulation-
based verification: does the final implementation meet the original specifica-
tion. There is a requirement, however, to integrate this verification capabil-
ity into the overall system development flow. In particular, it is necessary
to validate the specification against the original requirements. This cannot
be achieved in an ad hoc manner. It is necessary to trace elements of the
specification back to the requirements, and for this tool support is vital to
ensure that there is a measurable way of ensuring that the requirements are
covered by the specification.

We focus on two primary areas: identifying functional requirements and
identifying safety requirements.

5

2.2 Requirements Analysis
The creation of a consistent system description is a challenging problem of
requirements engineering. Formal and informal reasoning can greatly con-
tribute to meet this challenge. However, this demands that formal and infor-
mal reasoning and the system description are connected in such a way that
the reasoning permits drawing conclusions about the system description.

The primary objective of this part of the work is to integrate Require-
ments Analysis into the ADVANCE toolset and workflow.

2.3 Safety Analysis
Traditionally, safety analysis is conducted after the event. An alternative
approach is considered in [Lev12]. Discovering the safety requirements using
safety analysis is conducted in parallel with the requirements analysis. In
this way, the full requirements of this system are developed much earlier in
the development flow.

The primary objective of this part of the work is to develop a method for
Safety Analysis which is closely integrated with Requirements Analysis and
is integrated into the ADVANCE toolset and workflow.

6

Chapter 3

Requirements Analysis

3.1 Tracing Requirements into Specifications

The creation of a consistent system description is a challenging problem of
requirements engineering. Formal and informal reasoning can greatly con-
tribute to meet this challenge. However, this demands that formal and in-
formal reasoning and the system description are connected in such way that
the reasoning permits drawing conclusions about the system description.

In [JHL11], we describe an incremental approach to requirements mod-
elling and validation that incorporates formal and informal reasoning. The
elaboration of this work in [Jas12] has been given the name ProR approach.
Our main contribution is an approach to requirements tracing that delivers
the necessary connection that links the reasoning to the system description.
Formal refinement is used in order to deal with large and complex system
descriptions.

We discuss tool support for our approach of requirements tracing that
combines informal requirements modelling with formal modelling and ver-
ification while tracing requirements among each other and into the formal
model.

A full account of the work described in the report is available in the paper
[HJL12].

3.2 A Model for Requirements Tracing

Our approach is based on WRSPM by Gunter et. al. [GJGZ00]. The objec-
tive of our approach is to produce a system description of “high quality” by
establishing a traceability that allows a systematic validation of the system
description and provides robustness with respect to changes in the system

7

description. It further allows the mixing of formal and informal elements,
thereby enabling rigorous reasoning where it is desired.

The approach distinguishes artefacts and phenomena. Phenomena de-
scribe the state space and state transitions of an environment and a system,
while artefacts describe constraints on the state space and the state transi-
tions.

Artefacts are distinguished into domain properties (W), requirement items
(R), nonfunctional requirements (N), specification elements (Q), implemen-
tation elements (P), design decisions (U), and platform properties (M).

Phenomena are distinguished by whether they are controlled by the sys-
tem, belonging to set s, or the environment, belonging to set e. Furthermore,
phenomena are distinguished by visibility. Environmental phenomena may
be visible to the system, belonging to ev, or hidden from it, belonging to eh.
Similarly, system phenomena belonging to sv are visible to the environment,
while those belonging to sh are hidden from it. These classes of phenomena
are mutually disjoint.

Once a system is modelled following our approach, a number of properties
can be verified with regard to the model, one being adequacy with respect to
Q:

∀e, s·W ∧Q⇒R ∧ U . (3.1)

It says that the specification constrains the world such that the requirements
and design decisions are realised. Note that if the world is vacuous, that
is, ¬(∃e, sv ·W), the implication would be trivial to satisfy by any specifica-
tion. However, if the world W is consistent, then we expect the development
method to preserve it: a specification Q must not be permitted to falsify the
premise W ∧ Q. We expect the specification Q to be feasible assuming W .
This can be achieved by construction using refinement, e.g., [Abr10].

The implementation should also satisfy a condition similar to adequacy:

∀e, s·W ∧M ∧ P ⇒R ∧ U . (3.2)

If we have already established adequacy, (3.2) can be achieved by refinement:

∀e, s·W ∧M ∧ P ⇒Q . (3.3)

The latter formula (3.3) reflects the refinement condition for relations pre-
sented in [HJ98]. An additional side condition provides for feasibility. We
use the refinement approach of [Abr10] that permits additionally changing
the data-representation.

Non-functional requirements depend, in particular, on design decisions.
This aspect of non-functional requirements is discussed in [CdPL09]. Design

8

decisions introduce architectural concepts or constrain the implementation,
for example.

∀e, s·W ∧R ∧ U ∧Q⇒N . (3.4)

We assume that often non-function requirements will not be formal. Hence,
formula (3.4) will usually consist of formal and informal artefacts with the
conclusion N being informal.

The implications in the formulae (3.1) to (3.4) indicate relationships be-
tween specific artefacts. For instance, a specific specification element Q′ may
imply a specific requirement item R′. We can also say that we can trace re-
quirement R′ to specification element Q′. The reference model provides the
foundation for our approach of requirement traceability. We also cast the
refinement theory of Event-B conceptually into the reference model so that
we can trace requirements among formal artefacts, among informal artefacts
and across formal and informal artefacts.

3.3 Tracing of Artefacts and Phenomena

In order to trace requirements we need to define relationships between arte-
facts. Currently, we are not interested in tracing implementation elements P
and platform properties M . We focus on the relationship between specifica-
tion Q and design decision U on one side and requirements items R and N ,
as well as domain properties W on the other.

We are interested in tracing justifications of artefacts, equivalence be-
tween artefacts, evolution of artefacts and tracing of phenomena used in
artefacts. We discuss the different kinds of tracing in turn.

Tracing Artefact Justification We say B justifies A, or B ← A, if B
justifies the presence of artefact A. It should be there for a reason. If we read
implications like (3.1) from the right to the left we arrive at justifications for
the involved artefacts. We say R ∧ U justify Q ∧W . We would like Q ∧W
not to contain more artefacts than necessary in order to establish (3.1). We
call a subset SB of the artefacts Q∧W such that SB⇒R∧U a satisfaction
base [KJ10] for R ∧ U . We are particularly interested in small satisfaction
bases to obtain as precise justifications as possible.

Reading a justification B ← A in the reverse direction A → B we say
that A realises B.

Tracing Artefact Equivalence In our approach some but not all arte-
facts may be formal. Often formal artefacts have informal counterparts. If

9

an artefact A is formal, we write Af. We write Bi if B is informal. When
formalising informal requirement items we often get direct correspondences
between informal items Ai and formal items Bf. We say that these items are
equivalent, denoted by Ai ↔ Bf. If Ai and Bf are only related by implica-
tion following this correspondence, statements about formal world properties
may not hold with respect to the corresponding informal world properties.
For this to hold we need either Ai→ Bf, that is the formal assumption about
the world are not stronger than the the informal assumptions, or equivalence
Ai ↔ Bf. Equivalence tells us that the informal domain properties are not
stronger than needed for building the system.

Tracing Artefact Evolution A system description evolves over time.
This may happen due to changing requirement items or due to improve-
ments to the description made by modelling and reasoning. Evolution does
not follow logical implication. The best we can do is to record approximately
how artefacts have changed over time based on differences between different
revisions of the system description. We write A B for A evolves into B.
Evolution traces are needed for the benefit of various stakeholders to follow
original requirement items into current revision of the system description.

Tracing Used Phenomena The partitioning of the phenomena indicates
that it is important to trace phenomena into various artefacts. We need
to verify that the various artefacts — informal and formal — only refer to
allowed phenomena as outlined in Section 3.2. We have only little means in
our hand to achieve consistency between formal and informal artefacts, and
this one appears simple and effective. We record references from artefacts to
phenomena saying that A uses p, denoted by, p ∈ A. This just means that
A makes some statement about p. The management of this relationship can
be handled efficiently by proper tool support, as described in Section 3.6.

3.4 Tracing Artefacts into Formal Refinements

If a model is developed by formal refinement, a sequence of machines is ob-
tained, where each new refinement captures some informal artefacts, which
can be expressed as invariants. In Event-B refinement, invariants are accumu-
lated along a series of formal refinements. Thus formal refinement permits us
to introduce and trace requirements gradually, alleviating a major difficulty
when dealing with complex requirements.

10

Informal Proofs about Formal Models Our approach is not limited
to verification by formal proof exclusively. We also permit (and encourage)
informal proof. Our aim here is not to formalise everything but to show how
formal and informal reasoning can be used together for complex models.

Informal Proofs about Informal Models Artefacts that are not traced
into the formal model can not be verified formally. There are various ways to
verify them informally. We should certainly not simply ignore them if they
do not fit into the current formal scheme. In [HJL12], we provide examples
of informal proofs.

3.5 A Process for Requirements Modelling and
Validation

In the requirements engineering process we distinguish the different activi-
ties of requirements elicitation, requirements specification, system modelling,
requirements validation and requirements management [Wie03], as depicted
in Figure 3.1.

During the requirements specification phase requirements and domain
properties are first identified. The objective of system modelling is the for-
mal modelling of a subset of the system description as well as the elaboration
of the specification elements. The objective of requirements validation is to
validate the relationship between informal artefacts and formal constructs
and to validate the adequacy of the specification elements. We see that re-
quirements management as a continuation of modelling and validation in a
later phase of a project lifecycle.

In our aproach, we focus on modelling and validation. Common ap-
proaches of requirements elicitation could be used to gather requirements
in early phases during the process. We do not consider this aspect of the
requirements process because it has little influence on modelling and valida-
tion.

The phase of modelling and validation consists usually of many iterations
between modelling and validation where the collection of all artefacts is val-
idated incrementally. A detailed description of the process can be found in
[JHL11].

The Fully Validated System Description When all traces have been
validated and claims in the formal model have been verified the system de-
scription is considered consistent with respect to

11

Requirements
Specification

Requirements
Management

System Modeling

Requirements Validation
Time

Development
Process

Figure 3.1: The Incremental Development Process

• the allowed references of phenomena by the different artefacts, as de-
scribed in Section3.2;

• the use of phenomena across different artefacts;

• the traces respecting formulae (3.1) to (3.4);

• the relationship of informal artefacts to formal constructs;

• the verified formal properties of the formal model.

Our approach only classifies artefacts and their relationships. There is
no provision for structuring the collection of artefacts as a whole. We ac-
knowledge that the structuring is a relevant issue in practice and rely on
approaches complementary to ours to carry this out. For instance, [Kov98]
argues that a list of requirements is much easier to understand if they are
given a meaningful order. Furthermore, additional structure such as sections
or headlines improves readability and scalability of a system description.

3.6 Tool Support

Keeping track manually of large sets of requirements and their relationships
is not feasible. For this reason it is mandatory that the method for require-
ments modelling that we suggest be supported by a software tool. The tool
ProR can be extended to achieve this. The generic method-independent
characteristics of the tool are discussed in [Jas10].

The genericity of ProR is achieved by means of the Eclipse Requirement
Modelling Framework (RMF, http://eclipse.org/rmf) [JG12], which consists
of a generic data model for requirements. Despite its genericity, a key objec-
tive in the development of ProR has been to support the approach described
in this paper.

12

The generic ProR supports tracing natural language requirements in the
form of hierarchical tables. A dedicated column of each table summarises
the incoming and outgoing traces.

ProR allows the customisation of its meta-model for concrete notions of
requirements. Such a customisation may, for example, consist of adding a
new type of requirements with a specified number of typed attributes. The
display of the requirements models can also be customised, for example, by
showing only selected attributes.

Our approach is supported by means of extending ProR. ProR is in-
tegrated with the Rodin formal modelling platform [ABH+10] and ProB
[LB08]. The tools Rodin and ProB in combination provide support for proof,
model checking and animation of formal models specified in the Event-B no-
tation. The integration with these tools provides support for the central
aspect of our approach: to exploit formal reasoning as much as possible for
modelling and analysing informal requirements. A screenshot of the resulting
tool is shown in Fig. 3.2.

3.7 Conclusion

We have presented an incremental approach for building a system description
consisting of formal and informal artefacts. The resulting system description
is complemented by a traces between those artefacts that support systematic
validation and change management.

The main objective of our approach is the validation of the informal
system description. Consequently, the formal model is no end in itself, but
only serves as a tool for the rigorous validation of the system description or
parts thereof. Specifically, any formal model that we create is located between
informal domain properties and informal requirements. The aim of the formal
modelling is to ensure consistency of the informal system description. The
approach of requirements tracing that we have developed plays a crucial role
in this.

The role of the formal model in the overall system development process
can vary and depends on a number of factors, including the problem to be
solved, the formalism that is chosen, the experience of the team, to name a
few.

This work has a strong focus on traceability, and we do not distinguish in
principle on whether the artefacts traced are formal or informal. Instead, we
focus on classifying the trace as a justification (or its inverse, realisation) and
its stronger form, equivalence. This allows us to construct a closed system
description that is consistent with respect to the purpose of its artefacts.

13

Figure 3.2: The Specification editor of ProR, showing how phenomena are
identified in the requirements through color highlighting. The properties
view shows the model element that is traced to the selected artifact in the
upper pane.

While such an approach cannot identify missing requirements or assump-
tions, it can ensure that all recorded requirements are realised. Further, the
introduction of phenomena allows the systematic creation and maintenance
of a glossary, and allows for some rudimentary consistence checks as well.

Finally, the work described here is supported by a tool integrating re-
quirements modelling, ProR, that is integrated with the tools for formal
verification by proof, Rodin, and by model-checking an animation, ProB.

14

Chapter 4

Safety Analysis

4.1 Introduction

To meet the objective of integrating Safety Analysis into the ADVANCE
method and toolset, we intend first to adopt the Safety Analysis method
proposed by Leveson in [Lev12] and second to use the requirements traceabil-
ity capabilities of the ProR plug-in described in the Requirements Analysis
chapter above. We will illustrate the Safety Analysis method with a case
study in which the functional and safety requirements of a domestic washing
machine will be explored.

4.2 The Washing Machine Case Study

We use this case study to explore a systematic method for identifying both
functional and safety requirements. We start with an overview of the washing
machine system.

4.2.1 System Overview

We are concerned with developing a Master Controller which, on receiving
a set of user settings from the Control Panel, will control the Water Drum
System and Agitator Motor to comply with those user settings.

4.2.2 Discovering the Functional Requirements

We investigate the functional requirements using a method that identifies the
system phenomena and then structures the functional requirements according
to these phenomena[YB12]. The phenomena that we shall explore are the

15

Monitored phenomena, Commanded phenomena, Controlled Phenomena and
Mode Phenomena.

4.2.3 Monitored Phenomena

These are the phenomena of the system that will be measured using sensors.
The Master Controller will use the values from these sensors to determine its
actions.

Drum Water Level

The Controller will receive the current level from the water level sensor.

Drum Water Temperature

The Controller will receive the current temperature from the water temper-
ature sensor.

Door Position

The Controller will receive from the door sensor whether the door is closed
or open.

Vibration Level

The Controller will receive from the vibration sensor the level of vibration.

4.2.4 Commanded Phenomena

These are the phenomena that are driven by the user through the washing
machine control panel.

Water level setting

The Controller will receive the water level setting from the Control Panel.
In this case two settings are possible: Half Load and Full Load.

Cycle setting

The Controller will receive the cycle setting identifier from the Control Panel
and decode the cycle setting. The cycle setting consists of

16

• The Mode Sequence, for example: Idle, Wash, Rinse, Spin, Rinse, Spin,
Idle

• The Mode Duration. How long each mode will run.

• The Spin Speed

Water temperature setting

The Controller will receive the water temperature setting from the Control
Panel: 30, 40 or 60 degrees Celsius.

Start signal

The Controller will receive the start signal from the Control Panel.

4.2.5 Controlled Phenomena

These are the phenomena that are driven by the Master Controller.

Door Lock

• The Controller will lock the Door at the start of the cycle.

• The Controller will unlock the Door at the end of the cycle.

• The Door will remain locked during the cycle.

Agitator Motor

• The Controller directs the speed and rotation direction of the Agitator
Motor.

• The Agitator Motor will be stationary when the door is unlocked.

Water Control Valves

• The Controller activates and de-activates the hot and cold water valves
to meet the water level and temperature requirements.

Water Drain Pump

• The Controller activates the water drain pump to meet the water level
requirements

17

Heater

• The Controller activates and de-activates the heater to meet the tem-
perature requirements

4.2.6 Mode Phenomena

The Controller Modes: Idle, Washing, Rinsing, Spinning

4.2.7 Discovering the Safety Requirements

The following two quotes from [Lev12] encapsulate the approach to safety
analysis, developed by Leveson, which we use in the case study.

Any controller - human or automated - needs
a model of the process being controlled to

control it effectively

Accidents can occur when the controller’s
process model does not match the state

of the system being controlled and the controller
issues unsafe commands.

Simply trying to make components more reliable does not in itself make a
system safer. Safety is enhanced when the controller(s) respond to component
failures in a way which ensures that the resulting hazards are correctly and
safely managed.

Consider a potential hazard arising from the heater sub-system of the
washing machine. The water could overheat dangerously if the controller
cannot monitor water temperature properly. If the Temperature Sensor is
faulty, the Controller could switch off the heater if the value read from Sensor
is out of operating range. If, however, the Sensor reports a value within the
operating range but the actual value is out of operating range, how can the
Controller respond to this hazard? Sensor redundancy, with the introduction
of a voting system in the Controller, can decrease the probability that the
hazard will not be detected. An alternative approach, however, is for the
Controller to predict the rise in water temperature and compare it with the
reported rise.

The Controller needs independent verification of the sensed values to
detect failure. This can be provided by values from a different sensor or the
Controller can generate predicted values in the absence of other sources of
data.

18

4.2.8 System-Theoretic Process Analysis

Leveson proposes a rigorous approach, System-Theoretic Process Analysis
(STPA), which consists of the following three steps:-

• Identify Potentially Hazardous Control Actions

• Derive the Safety Constraints

• Determine How Unsafe Control Actions could Occur

STPA has been used by the US Missile Defense Agency to characterize
the residual safety risk of the Ballistic Missile Defense System [PLH06]. A
simulator of the Interceptor Flight Computer is used to predict the expected
behaviour and therefore to detect a failure in the system.

In our method, we perform a systematic analysis of the Controlled Phe-
nomena identified in the Requirements Analysis: the Door Lock, the Heater,
the Water Drain Pump, the Water Control Valves and the Agitator Motor.

The Door Sub-system

Consider first a model of the Controlled Door Sub-system as shown in Figure
4.1.

Controller

 Process Model
Door Position

-- Open
 -- Closed

 -- Unknown
Door Security

 -- Locked
 -- Unlocked
 -- Unknown

Human Operator

 Process Model
Door Security

 -- Locked
 -- Unlocked
 -- Unknown

Door
Sub-system

Actuator Sensor

Lock Door
Unlock Door

Open Door
Close Door

Door is Open
Door is Closed

Controlled Process

Figure 4.1: The Controlled Door Sub-system

19

The Main Controller has a Process Model of the Door Sub-system. So
also does the Human Operator. The Operator can open or close the door
directly. The Controller uses an Actuator to lock and unlock the door and a
Sensor to detect whether the door is open or closed.

Step I: Identifying Potentially Hazards Control Actions

For each of the two Controller actions, Unlock Door and Lock Door, we
identify three potential causes of a hazard: not providing the action when it
should, providing the action when it shouldn’t and providing the action at
the wrong time or in the wrong order. The results of the analysis are shown
in in Figure 4.2.

Controller	
 Ac+on	
 Not	
 Providing	
 Causes	

Hazard	

Providing	

Causes	
 Hazard	

Wrong	
 Timing	
 or	

Order	
 Causes	
 Hazard	

Unlock	
 Door	
 Not	
 Hazardous	
 Operator	
 can	
 open	

door	
 with	
 drum	
 filled	

	

Water	
 not	
 fully	

drained	

Lock	
 Door	
 Operator	
 can	
 open	

door	
 with	
 drum	
 filled	

Not	
 Hazardous	
 Water	
 starts	
 filling	

before	
 Lock	

Figure 4.2: Hazards: Door

Failing to unlock the door is inconvenient but not hazardous. Unlocking
the door when the drum is filled is hazardous because the operator will be
able to open the door inadvertently and release potentially very hot water.
Unlocking the door before the drum has been fully drained is also hazardous.

Failing to lock the door when the drum is filled is hazardous, but locking
the door when the drum is empty is not. Locking the door after the drum
has started filling is hazardous.

Step II: Deriving the Safety Constraints

Three Safety Constraints can be derived from Figure 4.2

• The Door must always be locked when there is water in the Drum

• An Unlock Door command must never be issued until the water is fully
drained

• A Lock Door command must be issued before starting to fill the Drum

The first is an Invariant of the system. The second and third are Guards
that prevent an operation occurring in an unsafe way. These natural language
invariants and guards can then be represented formally in an Event-B model.

20

Step III: Determining How Unsafe Control Actions could Occur

We now revisit the Controlled Door Sub-system to determine systematically
the potential causes of unsafe actions as shown in Figure 4.3.

Controller

Human Operator
Door open;

Water in Drum

Actuator Failure Sensor Failure

Lock Issued
but not
Received

Door not
Properly
Closed
Opens Door
When Drum
Has Water

Missing/Spurious
Data on whether
Door is Closed or not

Door Closed signaled
When not Properly Closed

Door not Locked

•  Requirements
not fully specified

•  Requirements
not Implemented

•  Process Model
Incorrect

•  Inadequately
Trained

•  Process Model
Incorrect

Figure 4.3: Potential causes of Unsafe Actions

The Controller or the Operator can have an inadequate or incorrect pro-
cess model of the Door Sub-system and actuators and sensors can fail. These
potential causes of unsafe actions can be used to both improve the design
and inform the test plan.

21

The Heater Sub-system

We now turn to the Controlled Heater Sub-system as shown in Figure 4.4.

Controller

 Process Model
Temperature

 -- Below Target
 -- At/Above

 Target
 -- Unknown

Heater
Sub-system

Actuator Sensor

Heater On
Heater Off

Water Temperature

Figure 4.4: The Heater Sub-system

In this case there is a single Controller; the Operator does not control the
heater directly. The Controller uses an Actuator to switch the heater on and
off and a Sensor to detect the water temperature.

Step I: Identifying Potentially Hazards Control Actions

For each of the two Controller actions, Heater Off and Heater On, we identify
three potential causes of a hazard: not providing the action when it should,
providing the action when it shouldn’t and providing the action at the wrong
time or in the wrong order. The results of the analysis are shown in Figure
4.5.

Controller	
 Ac+on	
 Not	
 Providing	
 Causes	

Hazard	

Providing	

Causes	
 Hazard	

Wrong	
 Timing	
 or	
 Order	

Causes	
 Hazard	

Heater	
 Off	
 1.  Water	
 already	
 Hot	

2.  No	
 Water	
 in	
 Drum	

Not	
 Hazardous	

	

1.  Already	
 Empty	

2.  Already	
 Overheated	

Heater	
 On	
 Not	
 Hazardous	
 1.  Water	
 already	
 Hot	

2.  No	
 Water	
 in	
 Drum	

Drum	
 has	
 insufficient	

Water	

Figure 4.5: Hazards: Heater

22

Failing to turn the heater off when the water is already hot or there is no
water in the drum is hazardous. Turning the heater off is never hazardous.
Failing to turn the heater on is also not hazardous, but turning it on when
the water is already hot or there is no water in the drum is.

Turning off the heater too late is hazardous and so is turning it on too
early when there is insufficient water in the drum.

Step II: Deriving the Safety Constraints

Several Safety Constraints can be derived from Figure 4.5

• The Heater must always be off if the temperature of the water is higher
than a given threshold above the required (selected) temperature. (IN-
VARIANT)

• The Heater must always be off if the water in the drum is empty.
(INVARIANT)

• A Heater On command must never be issued when the water is already
hot. (GUARD)

• A Heater On command must never be issued when the water is below
the minimum level. (GUARD)

Once again, these natural language guards can be modelled formally with
Event-B.

23

Step III: Determining How Unsafe Control Actions could Occur

Again, we revisit the Controlled Heater Sub-system to determine systemati-
cally the potential causes of unsafe actions as shown in Figure 4.6.

Controller

Heater on;
Temp too high

Actuator Failure Sensor Failure

Heat Off
Issued but not
Received

Missing/Spurious
Data on state of
Water Temp

High temperature not detected or
Detection delayed

Actuator fails to turn
Heater off
Actuator delays turning
Heater off

•  Requirements
not fully specified

•  Requirements
not Implemented

•  Process Model
Incorrect

Figure 4.6: Potential causes of Unsafe Actions

24

The Drum Sub-system

Next, we look at the Controlled Drum Sub-system as shown in Figure 4.7.

Controller

 Process Model
Water Level

 -- Below Target
 -- At/Above

 Target
 -- Unknown

Water Drum
Sub-system

Sensor

Pump On
Pump Off

Hot Water On
Hot Water Off

Cold Water On
Cold Water Off

Water Level

Actuators

Figure 4.7: The Drum Sub-system

In this case, we need to consider the pump, the hot and the cold water
valves.

Step I: Identifying Potentially Hazards Control Actions

First we consider the pump, as shown in Figure 4.8.

Controller	
 Ac+on	
 Not	
 Providing	
 Causes	

Hazard	

Providing	

Causes	
 Hazard	

Wrong	
 Timing	
 or	
 Order	

Causes	
 Hazard	

Pump	
 Off	
 Pump	
 operates	
 with	
 no	

Water	
 in	
 Drum	

Water	
 level	
 too	
 high	

in	
 Drum	

Drum	
 Already	
 Empty	

Pump	
 On	
 Water	
 level	
 too	
 high	
 in	

Drum	

Pump	
 operates	
 with	

no	
 Water	
 in	
 Drum	

Drum	
 level	
 already	
 too	

high	

Figure 4.8: Hazards: Pump

25

and then the water valves, as shown in Figure 4.9.

Controller	
 Ac+on	
 Not	
 Providing	
 Causes	

Hazard	

Providing	

Causes	
 Hazard	

Wrong	
 Timing	
 or	
 Order	

Causes	
 Hazard	

Hot/Cold	
 Water	

Off	

Water	
 level	
 too	
 high	
 in	

Drum	

Not	
 Hazardous	
 Drum	
 level	
 already	
 too	

high	

Hot/Cold	
 Water	

On	

Not	
 Hazardous	
 Water	
 level	
 too	
 high	

in	
 Drum	

Not	
 hazardous	

Figure 4.9: Hazards: Valves

Step II: Deriving the Safety Constraints

We then derive the Safety Constraints from Figure 4.8 and Figure 4.9. Here,
we just show the Invariants.

• The Pump must always be off if there is no Water in the Drum. (IN-
VARIANT)

• The Pump must always be on if the Water level is too high. (INVARI-
ANT)

• The Hot and Cold Water must always be off if the Water level is too
high. (INVARIANT)

26

Step III: Determining How Unsafe Control Actions could Occur

We revisit the Controlled Drum Sub-system to determine systematically the
potential causes of unsafe actions as shown in Figure 4.10 and Figure 4.11.

Controller

Pump on;
Empty.

Pump off;
Overfilled

Actuator Failure Sensor Failure

Pump On/Off
Issued but not
Received

Missing/Spurious
Data on state of
Water Level

Water level not detected
Detection delayed

Actuator fails to turn
Pump on/off
Actuator delays turning
Pump on/off

•  Requirements
not fully specified

•  Requirements
not Implemented

•  Process Model
Incorrect

Figure 4.10: Potential causes of Unsafe Actions: Pump

Controller

Water on;
Overfilled

Actuator Failure Sensor Failure

Hot/Cold Off
Issued but not
Received

Missing/Spurious
Data on state of
Water Level

Water level not detected
Detection delayed

Actuator fails to turn
Water off
Actuator delays turning
Water off

•  Requirements
not fully specified

•  Requirements
not Implemented

•  Process Model
Incorrect

Figure 4.11: Potential causes of Unsafe Actions: Valves

The analysis is, finally, repeated on the Agitator Motor sub-system.

27

4.3 Summarising the Safety Analysis Method
• The Functional Requirements are developed using the System Phenom-

ena

• The Safety Requirements are derived from the Controlled Phenomena

• The Safety Constraints are then derived systematically from the Safety
Requirements, represented in natural language

• The Safety Constraints are represented formally in the Event-B model
as invariants and guards

4.4 Tool Support
Since ProR is highly configurable, no special tooling will be needed to sup-
port the ADVANCE Safety Analysis method. We will first configure ProR to
capture the requirements phenomena and then link the controlled phenom-
ena to the safety analysis. We will also link the Event-B model invariants
and guards to the safety requirements. In this way we will leverage the
traceability facilites already provided by ProR.

28

Chapter 5

Summary

We have shown that we have developed a method in ADVANCE for capturing
System Requirements and providing traceability between those requirements
and a formal specification of the system in Event-B. We provide tool support
with ProR which has been shown to be both flexible and extensible. We
have also developed a method for capturing Safety Requirements which is
integrated with Functional Requirement capture and will also use the ProR
facility. In future work, we plan to configure ProR to support this integrated
requirements capture method, using the Washing Machine Case Study to
validate our approach.

29

Bibliography

[ABH+10] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin. Rodin: an open toolset for modelling and reasoning
in Event-B. STTT, 12(6):447–466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B – System and Software Engi-
neering. Cambridge University Press, 2010.

[CdPL09] L. Chung and J. C. Sampaio do Prado Leite. On non-functional
requirements in software engineering. In A. Borgida, V. K.
Chaudhri, P. Giorgini, and E. S. K. Yu, editors, Conceptual Mod-
eling: Foundations and Applications, volume 5600 of LNCS, pages
363–379. Springer, 2009.

[GJGZ00] C. A. Gunter, M. Jackson, E. L. Gunter, and P. Zave. A reference
model for requirements and specifications. IEEE Software, 17:37–
43, 2000.

[HJ98] C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming.
Prentice Hall, 1998.

[HJL12] S. Hallerstede, M. Jastram, and L. Ladenberger. A method and
tool for tracing requirements into specifications. Submitted to
Science of Computer Programming, 2012.

[Jas10] M. Jastram. ProR, an open source platform for requirements
engineering based on RIF. SEISCONF, 2010.

[Jas12] M. Jastram. The ProR Approach: Traceability of Requirements
and System Descriptions. Inaugural-Dissertation. CreateSpace,
2012.

[JG12] M. Jastram and A. Graf. ReqIF – the new requirements standard
and its open source implementation Eclipse RMF. Technical re-
port, Commercial Vehicle Technology Symposium, 2012.

30

[JHL11] M. Jastram, S. Hallerstede, and L. Ladenberger. Mixing formal
and informal model elements for tracing requirements. In AVOCS
2011, AVOCS 2011, 2011.

[KJ10] E. Kang and D. Jackson. Dependability arguments with trusted
bases. In RE, pages 262–271. IEEE Computer Society, 2010.

[Kov98] B. L. Kovitz. Practical software requirements: a manual of content
and style. Manning, 1998.

[LB08] M. Leuschel and M. Butler. ProB: an automated analysis toolset
for the B method. STTT, 10(2):185–203, 2008.

[Lev12] N.G. Leveson. Engineering a safer world: Systems thinking ap-
plied to safety. MIT Press (MA), 2012.

[PLH06] S.J. Pereira, G. Lee, and J. Howard. A system-theoretic hazard
analysis methodology for a non-advocate safety assessment of the
ballistic missile defense system. Technical report, DTIC Docu-
ment, 2006.

[Wie03] K. E. Wiegers. Software Requirements: Practical Techniques for
Gathering and Managing Requirements throughout the Product
Development Cycle. Microsoft Press, 2nd edition, 2003.

[YB12] S. Yeganefard and M. Butler. Control systems: Phenomena and
structuring functional requirement documents. 2012.

31

	d.5.1-front-cover-sheet
	AdvanceD5.1
	Preface
	Process Integration Objectives
	Motivation
	Requirements Analysis
	Safety Analysis

	Requirements Analysis
	Tracing Requirements into Specifications
	A Model for Requirements Tracing
	Tracing of Artefacts and Phenomena
	Tracing Artefacts into Formal Refinements
	A Process for Requirements Modelling and Validation
	Tool Support
	Conclusion

	Safety Analysis
	Introduction
	The Washing Machine Case Study
	Summarising the Safety Analysis Method
	Tool Support

	Summary
	Bibliography

