
Project ADVANCE

Grant Agreement 287563

“Advanced Design and Verification Environment for

Cyber-physical System Engineering”

ADVANCE Deliverable D4.1

Specification of Multi-Simulation Framework

Public Document

December 19, 2011

http://www.advance-ict.eu

http://www.advance-ict.eu

Contributors:

John Colley

Reviewers:

Jose Reis

2

Contents

1 Preface 4

2 Multi-Simulation Objectives 5
2.1 Motivation . 5
2.2 Top-level Requirements . 6

3 Multi-Simulation Framework Top-level Specification 8
3.1 The Simulation Queuing Mechanism: the Two-list Simulation

Algorithm . 9
3.2 The Simulation API . 10
3.3 Multi-Simulation with a 3rd Party Simulator 13
3.4 Multi-simulation with ProB 15
3.5 Performance Optimisations with a Single 3rd Party Simulator 15
3.6 Support for Constrained-Random Test Generation 15
3.7 Support for Coverage Metric Collection and Reporting 16

4 Proposed Multi-Simulation Architecture 18

5 Summary 20

Bibliography 21

3

Chapter 1

Preface

WP4 deliverable definition: Specification of multi-simulation framework.

This deliverable describes the various simulation tools and techniques that
will have to be combined to provide an effective multi-simulation framework.
The specification focuses on the structural mechanism needed to integrate
a simulation tool into the framework, possibly as a plug-in, and the com-
munication mechanisms that needs to be supported to ensure the efficient
transfer of data between co-operating simulation tools. The requirements for
the final multi-simulation framework are expressed and an architecture will
be specified.

4

Chapter 2

Multi-Simulation Objectives

2.1 Motivation
Simulation is the dominant technology for the industrial verification of dig-
ital hardware and embedded systems. The use of the Verilog and VHDL
modelling languages is widespread in simulation-based digital hardware veri-
fication and SystemVerilog and SystemC are used increasingly for the design
and simulation of systems. The design and verification of cyber-physical sys-
tems, however, introduce new challenges which cannot be easily addressed by
existing simulation frameworks. First, it is necessary in a cyber-physical sys-
tem to model and simulate in the continuous as well as the digital domain.
Second, the complexity of highly-concurrent systems cannot be addressed
by simulation techniques alone. Refinement-based formal methods, such as
Event-B [Abr10] help considerably to manage this complexity and to verify
that the implemented system meets its specification.

It is not feasible to contemplate developing a single simulation language
and verification environment that can meet all the requirements for cyber-
physical development and verification. Legacy designs must be re-used and
the specialised expertise of developers with existing tool chains leveraged.
The primary objective of the ADVANCE multi-simulation framework is to
address the needs for different design and verification tools, both discrete and
continuous, test-based and formal to co-operate within a single development
and verification framework.

5

2.2 Top-level Requirements
The top level requirements for the multi-simulation framework, as outlined in
the ADVANCE proposal, are expanded and enumerated. Each requirement,
Rn is accompanied by the motivation Mn behind that requirement.

R1 ADVANCE will implement a simulation framework, extending the ex-
isting RODIN platfom [Rod], within which independently-developed,
heterogeneous components and sub-systems can be composed in a se-
cure manner to enable Cyber-Physical System design and development.

M1 The great difficulty faced in assembling compatible models of the com-
ponents and sub-systems which are at the appropriate level of abstrac-
tion to enable effective and efficient system verification presents a major
barrier to the adoption of Cyber-Physical System engineering methods.

R2 In ADVANCE, the models of the components and sub-systems, devel-
oped using formal techniques, are imported directly into the simulation
framework using two, complementary techniques.

R2.1 In the first, a simulation model is generated automatically from the
formal model using techniques that build upon the code-generation
methods developed in the FP7 DEPLOY project[Uni09].

M2.1 This technique will be used when the component model is mature and
less-prone to frequent changes and will have the advantage of fast and
efficient simulation.

R2.2 In the second, the model will be executed by its own host simulator and
the ADVANCE multi-simulation framework will manage the communi-
cation of data between multiple simulation hosts, enabling simulation
and verification of the whole system.
R2.2.1 More than one 3rd party simulator should be able to be em-
ployed during multi-simulation.
R2.2.2 The facility should support both discrete and continuous 3rd
party simulators.
R2.2.3 If a 3rd party simulator is responsible for more than one system
component, the connections between the components should still be
managed by the multi-simulation master.

6

M2.2 This second technique will allow model development in other languages
and environments is to be leveraged without the need to translate the
models to the host ADVANCE format.

R3 The ProB formal model animator and model checker, also developed
in the FP7 DEPLOY project, will be extended and its performance
improved so that it too can be integrated within the ADVANCE multi-
simulation framework.

M3 This will facilitate early system integration while the model is still be-
ing developed and allow interactive de-bugging. However, the execution
performance of the embedded ProB model should still good enough to
enable extensive regression tests to be run on the system so that mod-
ifications to the model can be verified in the system context.

R4 ADVANCE will extend and augment the test generation tool already
proved in Rodin to facilitate constrained random testing.

M4 Hardware Verification Languages and tool environments such as Spec-
man, VERA and SystemVerilog provide constraint-based random test-
ing capabilities at a high level of abstraction and have been deployed
successfully in the field of chip verification over the last decade. Provid-
ing the same capabilities for cyber-physical system verification within
ADVANCE will leverage a proven verification technique in a new do-
main.

R5 The simulation model generation capability provided by ADVANCE
will allow the option of collecting coverage measurements during simu-
lation and test.

M5 Measuring the coverage achieved by testing is an essential component of
any constrained random testing methodology. ProB already provides
the facility to measure coverage of Nodes and operations of Event-B
models. ADVANCE will bring these coverage measurement facilities to
the wider simulation framework.

7

Chapter 3

Multi-Simulation Framework
Top-level Specification

In order to meet the top-level requirements for the multi-simulation frame-
work, it will be necessary to implement the fundamental, characteristic fa-
cilities of a typical discrete event simulator.

1. It will be necessary to implement the deterministic, simulation queuing
mechanism that manages the timing and concurrency of simulation
events.

2. It will be necessary to provide a Simulation Application Programming
Interface (API) to this queuing mechanism with which simulation com-
ponents can be developed and which the simulation model generation
facility can use to generate efficient models.

3. The framework will provide a mechanism for 3rd party simulator exe-
cutables to be initiated and for communication to be established with
these executables

4. The framework will implement a closely-coupled interface with ProB
within the Rodin Platform

5. The communication between the framework and the 3rd party simula-
tors must be implemented and managed efficiently.

6. The framework must provide the capability for constrained-random test
generation to be used on the system under test

7. The framework must provide the capability for coverage metrics to be
collected and recorded during system simulation.

8

3.1 The Simulation Queuing Mechanism: the
Two-list Simulation Algorithm

• Addresses Requirements: R1, R2.2, R3

The timing and synchronisation of communicating design components
should be efficient and deterministic. This requirement can be met by imple-
menting the well-established, two-list simulation algorithm which is employed
in both VHDL and SystemC.

3.1.1 The Two-list Mechanism

Simulation operates in two, alternating modes, update mode and evaluation
mode.

Consider a simple system with four components, A, B, C and D which
communicate using channels C1 and C2, as shown in Figure 3.1. The chan-
nels are connected to the components using output ports, shown in black and
input ports, shown in white.

Two lists, the update list and the evaluation list, a time-ordered queue,
as shown in Figure3.2 are used to implement the algorithm.

In update mode, all value changes scheduled at current time to any of
the channels are taken from the update list and executed. The fanout of
each channel whose value has changed is examined and all components that
have input ports connected to the channel are placed in the evaluation list.
When all updates for current time have been completed, control switches to
the evaluation list and all the components in this list are evaluated. These
component evaluations result in future schedules which are placed in the up-
date list. When all the component evaluations have been completed, control
reverts to the update list and time is advanced to the next value change
schedule in the list.

Note that the order in which the components are evaluated is immaterial
since all communication between the components is managed by the update
list and new channel input values are not visible until the next time that the
components are evaluated.

Note also that the minimum delay for a future schedule is one unit. Zero
delay is not supported.

9

A"

C"

B"

D"

C1

C2

Figure 3.1: A Simple System

3.2 The Simulation API
• Addresses Requirements: R1, R2.1, R2.2, R3

Each component can only interact with other components running con-
currently in the system using the Simulation API.

A component can write a value to a channel through its output port and
assign an arbitrary delay to the write.

• SetValue(OUT port, value, delay)

This API call results in an entry being added to the update list at
current time+ delay to change the channel value to value.

Any component that has an input port connected to the channel that
has changed will be evaluated when the delay on SetValue matures. The

10

A"

C"

B"

D"

C1

C2

update
list

evaluation
list

t = 0

t = n

Figure 3.2: The two-list Algorithm

receiving component can then read the value of the channel connected to its
input port.

• GetValue(port)

The component may also use this call to read the value of a channel
connected to one of its output ports.

When a component is evaluated which has more than one input port, the
component can determine which ports have changed.

• HasChanged(port)

Time cannot be advanced within a component execution, though a com-
ponent can suspend its execution and ask to be evaluated at some time in
the future.

• ScheduleEval(delay)

This API call results in an entry being added to the update list at
current time + delay which will add the component to the evaluation list
when the delay on ScheduleEval matures.

The developer of a component must ensure that evaluation of the com-
ponent will suspend so that simulation can continue.

11

3.2.1 Simulating Systems without Discrete Delays: Unit

Delay

In the case where the system is not concerned with actual delay, the notion
of unit delay simulation will be implemented which has considerable perfor-
mance advantages over general simulation with delay. There is no need for
the update list to be implemented as a queue; a simple list will suffice as
shown in Figure3.3.

A"

C"

B"

D"

C1

C2
update

list

evaluation
list

Each evaluate/update
cycle advances time by
one tick

Figure 3.3: Unit Delay

12

3.3 Multi-Simulation with a 3rd Party Simula-
tor

• Addresses Requirements: R1, R2.2

If one of the components of the system does not have a native implementa-
tion, as shown in Figure3.4, then the multi-simulation framework will initiate
a Master/Slave multi-simulation with the 3rd party simulator in which that
component is modelled.

A"

C"

B"

D"
External"
Model"

C1

C2

C3

Figure 3.4: Co-Simulation

The multi-simulation framework, the master is responsible for the master
event queue, the system topology (components and connectors), for initiating
the slave 3rd party simulator and for establishing the inter-process commu-
nication. The component represented by the slave simulator is implemented

13

as a wrapper in the master which implements the simulator API and com-
municates directly with the slave simulator through its internal API using
sockets or any like mechanism that the slave simulator supports.

14

3.4 Multi-simulation with ProB

• Addresses Requirements: R2.2, R3

Although the ProB formal animator and model checker will use the same,
fundamental mechanism as any 3rd party simulator, the integration will be
more tightly coupled and specialised within the Rodin environment to im-
prove multi-simulation performance and to take advantage of its model check-
ing and coverage collection capabilities.

The following three sections also describe multi-simulation facilities that
will form part of the ProB integration.

3.5 Performance Optimisations with a Single
3rd Party Simulator

• Addresses Requirements: R1

When only one 3rd party simulator is used in multi-simulation as a Slave
and the Slave provides an interface that allows the Master to see the Slave’s
future schedules, multi-simulation performance will be enhanced because it
is not necessary to synchronise the simulators at each time step.

If the Slave simulator also has the ability to backtrack, the Master will al-
low the Slave to proceed freely with its simulation. If the Slave has moved in
time beyond the next synchronisation point, the Master will instruct the
Slave to backtrack to that synchronisation point before multi-simulation
recommences.

3.6 Support for Constrained-Random Test Gen-
eration

• Addresses Requirements: R4

The multi-simulation framework will enable the development of compre-
hensive system test suites by providing an integrated testbench facility to
support constrained-random test generation. The testbench represents the
system environment and drives the system design during simulation through
the primary inputs using the simulation API and records the results at the
primary outputs, also using the API, as shown in Figure 3.5.

15

A"

C"

B"

D"

C1

C2

Primary
inputs

Primary
outputs

Figure 3.5: The Testbench

From the point of view of the multi-simulation architecture, the testbench
is simply another component, connected to the system under test through in-
put and output ports and using the multi-simulation API for communication
and synchronisation.

The facility to produce a log file of simulation results will be provided for
regression testing purposes.

When the testbench component is represented by ProB, the constrained-
random test generation facilities supported by ProB will be used to verify
the system under test.

3.7 Support for Coverage Metric Collection and
Reporting

• Addresses Requirements: R5

When the testbench component is represented by ProB, the coverage
metric facilities supported by ProB will be used to measure the coverage of
the test suite developed for the system under test. ProB provides a measure
of transition coverage.

16

Where a system component has been generated for simulation with the
coverage option switched on, the transition coverage measurements for this
component will be reported by the framework for each test.

17

Chapter 4

Proposed Multi-Simulation
Architecture

ADVANCE will extend the RODIN platform to support the multi-simulation
core as shown in Figure 4.1.

A"

Rodin"Pla+orm"

ProB" Mul12Simula1on"Core"

3rd"
Party"
sim"

3rd"
Party"
sim"

. . .

ADVANCE

Figure 4.1: Proposed Multi-Simulation Architecture

18

The multi-simulation core will implement the specified simulation queues
and API and will be responsible for establishing the synchronisation and
communication mechanisms with the third-party simulators.

The Rodin platform user interface will be enhanced to allow the AD-
VANCE user to

• Describe the components and connections between the components for
the cyber-physical system.

• Associate with each component the appropriate third party simulator.

• Describe and develop the simulation test bench.

• Specify the coverage metrics that will be collected during simulation.

• Collect a trace of the simulation results.

The multi-simulation architecture will be refined and further developed
during the design phase.

19

Chapter 5

Summary

This deliverable presents the top-level requirements for the ADVANCE Multi-
Simulation Framework and the motivation behind each of these requirements.
It then presents a top-level specification for the multi-simulation core, the
simulation queues and the API that the core should support and the mecha-
nisms for communication and synchronisation with third-party simulators. It
concludes with a description of the proposed multi-simulation architecture.

20

Bibliography

[Abr10] J.-R. Abrial. The Event-B Book. Cambridge University Press, Cam-
bridge, UK, 2010.

[Rod] Rodin. The RODIN platform. Online at http://rodin-b-
sharp.sourceforge.net/.

[Uni09] Newcastle University. DEPLOY - Industrial deployment of system
engineering methods providing high dependability and productivity,
May 2009. http://www.deploy-project.eu/.

21

	Preface
	Multi-Simulation Objectives
	Motivation
	Top-level Requirements

	Multi-Simulation Framework Top-level Specification
	The Simulation Queuing Mechanism: the Two-list Simulation Algorithm
	The Simulation API
	Multi-Simulation with a 3rd Party Simulator
	Multi-simulation with ProB
	Performance Optimisations with a Single 3rd Party Simulator
	Support for Constrained-Random Test Generation
	Support for Coverage Metric Collection and Reporting

	Proposed Multi-Simulation Architecture
	Summary
	Bibliography

